In addition to public-private resourcing, the technologies we need for fusion plants have come along in leaps and bounds.
In 2021, MIT scientists and Commonwealth Fusion Systems developed a record-breaking magnet that will allow them to build a compact fusion device called SPARC “that is substantially smaller, lower cost, and on a faster timeline”.
In recent years, several fusion experiments have also reached the all-important milestone of sustaining plasma temperatures of 100 million degrees Celsius or above. These include the EAST experiment in China, Korea’s flagship experiment KSTAR, and UK-based company Tokamak Energy.
These incredible feats demonstrate an unprecedented ability to replicate conditions found inside our Sun and keep extremely hot plasma trapped long enough to encourage fusion to occur.
In February, the Joint European Torus – the world’s most powerful operational tokamak – announced world-record energy confinement.
And the next-step fusion energy experiment to demonstrate net power gain, ITER, is under construction in France and now about 80% complete.
Magnets aren’t the only path to fusion either. In November 2021, the National Ignition Facility at Lawrence Livermore National Laboratory in California achieved a historic step forward for inertial confinement fusion.
By focusing nearly 200 powerful lasers to confine and compress a target the size of a pencil’s eraser, they produced a small fusion “hot spot” generating fusion energy over a short time period.
In Australia, a company called HB11 is developing proton-boron fusion technology through a combination of high-powered lasers and magnetic fields.